RulesReasoning Rules
Set Implicit Arguments.
This file imports LibSepDirect.v instead of Hprop.v and Himpl.v.
The file LibSepDirect.v contains definitions that are essentially similar
to those from Hprop.v and Himpl.v, yet with one main difference:
LibSepDirect makes the definition of Separation Logic operators opaque.
As a result, one cannot unfold the definition of hstar, hpure, etc.
To carry out reasoning, one must use the introduction and elimination
lemmas (e.g. hstar_intro, hstar_elim). These lemmas enforce
abstraction: they ensure that the proofs do not depend on the particular
choice of the definitions used for constructing Separation Logic.
First Pass
- introduced the key heap predicate operators,
- introduced the notion of Separation Logic triple,
- introduced the entailment relation,
- introduced the structural rules of Separation Logic.
- definition of the syntax of the language,
- definition of the semantics of the language,
- statements of the reasoning rules associated with each of the term constructions from the language,
- specification of the primitive operations of the language, in particular those associated with memory operations,
- review of the 4 structural rules introduced in prior chapters,
- examples of practical verification proofs.
- proofs of the reasoning rules associated with each term construct,
- proofs of the specification of the primitive operations.
Syntax
Inductive val : Type :=
| val_unit : val
| val_bool : bool → val
| val_int : int → val
| val_loc : loc → val
| val_fun : var → trm → val
| val_fix : var → var → trm → val
| val_ref : val
| val_get : val
| val_set : val
| val_free : val
| val_add : val
| val_div : val
| val_unit : val
| val_bool : bool → val
| val_int : int → val
| val_loc : loc → val
| val_fun : var → trm → val
| val_fix : var → var → trm → val
| val_ref : val
| val_get : val
| val_set : val
| val_free : val
| val_add : val
| val_div : val
The grammar for terms includes values, variables, function definitions,
recursive function definitions, function applications, sequences,
let-bindings, and conditionals.
with trm : Type :=
| trm_val : val → trm
| trm_var : var → trm
| trm_fun : var → trm → trm
| trm_fix : var → var → trm → trm
| trm_app : trm → trm → trm
| trm_seq : trm → trm → trm
| trm_let : var → trm → trm → trm
| trm_if : trm → trm → trm → trm.
Note that trm_fun and trm_fix denote functions that may feature free
variables, unlike val_fun and val_fix which denote closed values.
The intention is that the evaluation of a trm_fun in the empty context
produces a val_fun value. Likewise, a trm_fix eventually evaluates to
a val_fix.
Several value constructors are declared as coercions, to enable more
concise statements. For example, val_loc is declared as a coercion,
so that a location p of type loc can be viewed as the value
val_loc p where an expression of type val is expected. Likewise,
a boolean b may be viewed as the value val_bool b, and an integer
n may be viewed as the value val_int n.
State
For technical reasons related to the internal representation of finite
maps, to enable reading in a state, we need to justify that the grammar
of values is inhabited. This property is captured by the following
command, whose details are not relevant for understanding the rest of
the chapter.
Substitution
Fixpoint subst (y:var) (w:val) (t:trm) : trm :=
let aux t := subst y w t in
let if_y_eq x t1 t2 := if var_eq x y then t1 else t2 in
match t with
| trm_val v ⇒ trm_val v
| trm_var x ⇒ if_y_eq x (trm_val w) t
| trm_fun x t1 ⇒ trm_fun x (if_y_eq x t1 (aux t1))
| trm_fix f x t1 ⇒ trm_fix f x (if_y_eq f t1 (if_y_eq x t1 (aux t1)))
| trm_app t1 t2 ⇒ trm_app (aux t1) (aux t2)
| trm_seq t1 t2 ⇒ trm_seq (aux t1) (aux t2)
| trm_let x t1 t2 ⇒ trm_let x (aux t1) (if_y_eq x t2 (aux t2))
| trm_if t0 t1 t2 ⇒ trm_if (aux t0) (aux t1) (aux t2)
end.
let aux t := subst y w t in
let if_y_eq x t1 t2 := if var_eq x y then t1 else t2 in
match t with
| trm_val v ⇒ trm_val v
| trm_var x ⇒ if_y_eq x (trm_val w) t
| trm_fun x t1 ⇒ trm_fun x (if_y_eq x t1 (aux t1))
| trm_fix f x t1 ⇒ trm_fix f x (if_y_eq f t1 (if_y_eq x t1 (aux t1)))
| trm_app t1 t2 ⇒ trm_app (aux t1) (aux t2)
| trm_seq t1 t2 ⇒ trm_seq (aux t1) (aux t2)
| trm_let x t1 t2 ⇒ trm_let x (aux t1) (if_y_eq x t2 (aux t2))
| trm_if t0 t1 t2 ⇒ trm_if (aux t0) (aux t1) (aux t2)
end.
Implicit Types and Coercions
Implicit Types b : bool.
Implicit Types v r : val.
Implicit Types t : trm.
Implicit Types s : state.
Implicit Types v r : val.
Implicit Types t : trm.
Implicit Types s : state.
We next introduce two key coercions. First, we declare
trm_val as a coercion, so that, instead of writing trm_val v,
we may write simply v wherever a term is expected.
Second, we declare trm_app as a "Funclass" coercion. This piece
of magic enables us to write t1 t2 as a shorthand for trm_app t1 t2.
The idea of associating trm_app as the "Funclass" coercion for the
type trm is that if a term t1 of type trm is applied like a
function to an argument, then t1 should be interpreted as trm_app t1.
Interestingly, the "Funclass" coercion for trm_app can be iterated.
The expression t1 t2 t3 is parsed by Coq as (t1 t2) t3. The first
application t1 t2 is interpreted as trm_app t1 t2. This expression,
which itself has type trm, is applied to t3. Hence, it is interpreted
as trm_app (trm_app t1 t2) t3, which indeed corresponds to a function
applied to two arguments.
Big-Step Semantics
1. eval for values and function definitions.
A value evaluates to itself.
A term function evaluates to a value function.
Likewise for a recursive function.
| eval_val : ∀ s v,
eval s (trm_val v) s v
| eval_fun : ∀ s x t1,
eval s (trm_fun x t1) s (val_fun x t1)
| eval_fix : ∀ s f x t1,
eval s (trm_fix f x t1) s (val_fix f x t1)
2. eval for function applications.
The beta reduction rule asserts that (val_fun x t1) v2
evaluates to the same result as subst x v2 t1.
In the recursive case, (val_fix f x t1) v2 evaluates to
subst x v2 (subst f v1 t1), where v1 denotes the recursive
function itself, that is, val_fix f x t1.
| eval_app_fun : ∀ s1 s2 v1 v2 x t1 v,
v1 = val_fun x t1 →
eval s1 (subst x v2 t1) s2 v →
eval s1 (trm_app v1 v2) s2 v
| eval_app_fix : ∀ s1 s2 v1 v2 f x t1 v,
v1 = val_fix f x t1 →
eval s1 (subst x v2 (subst f v1 t1)) s2 v →
eval s1 (trm_app v1 v2) s2 v
3. eval for structural constructs.
A sequence trm_seq t1 t2 first evaluates t1, taking the
state from s1 to s2, drops the result of t1, then evaluates
t2, taking the state from s2 to s3.
The let-binding trm_let x t1 t2 is similar, except that the
variable x gets substituted for the result of t1 inside t2.
| eval_seq : ∀ s1 s2 s3 t1 t2 v1 v,
eval s1 t1 s2 v1 →
eval s2 t2 s3 v →
eval s1 (trm_seq t1 t2) s3 v
| eval_let : ∀ s1 s2 s3 x t1 t2 v1 r,
eval s1 t1 s2 v1 →
eval s2 (subst x v1 t2) s3 r →
eval s1 (trm_let x t1 t2) s3 r
4. eval for conditionals.
A conditional in a source program is assumed to be of the form
if t0 then t1 else t2, where t0 is either a variable or a
value. If it is a variable, then by the time it reaches an
evaluation position, the variable must have been substituted
by a value. Thus, the evaluation rule only considers the form
if v0 then t1 else t2. The value v0 must be a boolean value,
otherwise evaluation gets stuck.
The term trm_if (val_bool true) t1 t2 behaves like t1, whereas
the term trm_if (val_bool false) t1 t2 behaves like t2.
This behavior is described by a single rule, leveraging Coq's "if"
constructor to factor out the two cases.
| eval_if : ∀ s1 s2 b v t1 t2,
eval s1 (if b then t1 else t2) s2 v →
eval s1 (trm_if (val_bool b) t1 t2) s2 v
5. eval for primitive stateless operations.
For similar reasons as explained above, the behavior of applied
primitive functions only need to be described for the case of value
arguments.
An arithmetic operation expects integer arguments. The addition
of val_int n1 and val_int n2 produces val_int (n1 + n2).
The division operation, on the same arguments, produces the
quotient n1 / n2, under the assumption that the dividor n2
is non-zero. In other words, if a program performs a division
by zero, then it cannot satisfy the eval judgment.
| eval_add : ∀ s n1 n2,
eval s (val_add (val_int n1) (val_int n2)) s (val_int (n1 + n2))
| eval_div : ∀ s n1 n2,
n2 ≠ 0 →
eval s (val_div (val_int n1) (val_int n2)) s (val_int (Z.quot n1 n2))
6. eval for primitive operations on memory.
There remains to describe operations that act on the mutable store.
val_ref v allocates a fresh cell with contents v. The operation
returns the location, written p, of the new cell. This location
must not be previously in the domain of the store s.
val_get (val_loc p) reads the value in the store s at location p.
The location must be bound to a value in the store, else evaluation
is stuck.
val_set (val_loc p) v updates the store at a location p assumed to
be bound in the store s. The operation modifies the store and returns
the unit value.
val_free (val_loc p) deallocates the cell at location p.
| eval_ref : ∀ s v p,
¬ Fmap.indom s p →
eval s (val_ref v) (Fmap.update s p v) (val_loc p)
| eval_get : ∀ s p,
Fmap.indom s p →
eval s (val_get (val_loc p)) s (Fmap.read s p)
| eval_set : ∀ s p v,
Fmap.indom s p →
eval s (val_set (val_loc p) v) (Fmap.update s p v) val_unit
| eval_free : ∀ s p,
Fmap.indom s p →
eval s (val_free (val_loc p)) (Fmap.remove s p) val_unit.
End SyntaxAndSemantics.
Loading of Definitions from Direct
Implicit Types x f : var.
Implicit Types b : bool.
Implicit Types p : loc.
Implicit Types n : int.
Implicit Types v w r : val.
Implicit Types t : trm.
Implicit Types h : heap.
Implicit Types s : state.
Implicit Types H : hprop.
Implicit Types Q : val→hprop.
Implicit Types b : bool.
Implicit Types p : loc.
Implicit Types n : int.
Implicit Types v w r : val.
Implicit Types t : trm.
Implicit Types h : heap.
Implicit Types s : state.
Implicit Types H : hprop.
Implicit Types Q : val→hprop.
Review of the Structural Rules
The consequence rule allows to strengthen the precondition and
weaken the postcondition.
In practice, it is most convenient to exploit a rule that combines
both frame and consequence into a single rule, as stated next.
(Note that this "combined structural rule" was proved as an exercise
in chapter Himpl.)
Parameter triple_conseq_frame : ∀ H2 H1 Q1 t H Q,
triple t H1 Q1 →
H ==> H1 \* H2 →
Q1 \*+ H2 ===> Q →
triple t H Q.
triple t H1 Q1 →
H ==> H1 \* H2 →
Q1 \*+ H2 ===> Q →
triple t H Q.
The two extraction rules enable to extract pure facts and existentially
quantified variables, from the precondition into the Coq context.
Parameter triple_hpure : ∀ t (P:Prop) H Q,
(P → triple t H Q) →
triple t (\[P] \* H) Q.
Parameter triple_hexists : ∀ t (A:Type) (J:A→hprop) Q,
(∀ (x:A), triple t (J x) Q) →
triple t (\∃ (x:A), J x) Q.
(P → triple t H Q) →
triple t (\[P] \* H) Q.
Parameter triple_hexists : ∀ t (A:Type) (J:A→hprop) Q,
(∀ (x:A), triple t (J x) Q) →
triple t (\∃ (x:A), J x) Q.
Exercise: 1 star, standard, optional (triple_hpure')
The extraction rule triple_hpure assumes a precondition of the form \[P] \* H. The variant rule triple_hpure', stated below, assumes instead a precondition with only the pure part, i.e., of the form \[P]. Prove that triple_hpure' is indeed a corollary of triple_hpure.
Lemma triple_hpure' : ∀ t (P:Prop) Q,
(P → triple t \[] Q) →
triple t \[P] Q.
Proof using. (* FILL IN HERE *) Admitted.
☐
(P → triple t \[] Q) →
triple t \[P] Q.
Proof using. (* FILL IN HERE *) Admitted.
☐
Rules for Terms
Reasoning Rule for Sequences
{H} t1 {fun v => H1} {H1} t2 {Q} | |
{H} (t1;t2) {Q} |
Parameter triple_seq : ∀ t1 t2 H Q H1,
triple t1 H (fun v ⇒ H1) →
triple t2 H1 Q →
triple (trm_seq t1 t2) H Q.
triple t1 H (fun v ⇒ H1) →
triple t2 H1 Q →
triple (trm_seq t1 t2) H Q.
The variable v denotes the result of the evaluation of t1. For
well-typed programs, this result would always be val_unit. Yet,
because we here consider an untyped language, we do not bother
adding the constraint v = val_unit. Instead, we simply treat the
result of t1 as a value irrelevant to the remaining of the
evaluation.
Reasoning Rule for Let-Bindings
{H} t1 {Q1} (forall x, {Q1 x} t2 {Q}) | |
{H} (let x = t1 in t2) {Q} |
{H} t1 {Q1} (forall v, {Q1 v} (subst x v t2) {Q}) | |
{H} (let x = t1 in t2) {Q} |
Parameter triple_let : ∀ x t1 t2 Q1 H Q,
triple t1 H Q1 →
(∀ v1, triple (subst x v1 t2) (Q1 v1) Q) →
triple (trm_let x t1 t2) H Q.
triple t1 H Q1 →
(∀ v1, triple (subst x v1 t2) (Q1 v1) Q) →
triple (trm_let x t1 t2) H Q.
Reasoning Rule for Conditionals
b = true -> {H} t1 {Q} b = false -> {H} t2 {Q} | |
{H} (if b then t1 in t2) {Q} |
Parameter triple_if_case : ∀ b t1 t2 H Q,
(b = true → triple t1 H Q) →
(b = false → triple t2 H Q) →
triple (trm_if (val_bool b) t1 t2) H Q.
(b = true → triple t1 H Q) →
(b = false → triple t2 H Q) →
triple (trm_if (val_bool b) t1 t2) H Q.
Note that the two premises may be factorized into a single one
using Coq's conditional construct. Such an alternative
statement is discussed further in this chapter.
Reasoning Rule for Values
{\[]} v {fun r => \[r = v]} |
H ==> Q v | |
{H} v {Q} |
Let us prove that the "minimalistic" rule {\[]} v {fun r ⇒ \[r = v]}
is equivalent to triple_val.
Exercise: 1 star, standard, especially useful (triple_val_minimal)
Prove that the alternative rule for values derivable from triple_val. Hint: use the tactic xsimpl to conclude the proof.
Lemma triple_val_minimal : ∀ v,
triple (trm_val v) \[] (fun r ⇒ \[r = v]).
Proof using. (* FILL IN HERE *) Admitted.
☐
triple (trm_val v) \[] (fun r ⇒ \[r = v]).
Proof using. (* FILL IN HERE *) Admitted.
☐
Exercise: 2 stars, standard, especially useful (triple_val')
More interestingly, prove that triple_val is derivable from triple_val_minimal. Hint: you will need to exploit the structural rule triple_conseq_frame.
Lemma triple_val' : ∀ v H Q,
H ==> Q v →
triple (trm_val v) H Q.
Proof using. (* FILL IN HERE *) Admitted.
☐
H ==> Q v →
triple (trm_val v) H Q.
Proof using. (* FILL IN HERE *) Admitted.
☐
Exercise: 4 stars, standard, especially useful (triple_let_val)
Consider a term of the form let x = v1 in t2, that is, where the argument of the let-binding is already a value. State and prove a reasoning rule of the form:Lemma triple_let_val : ∀ x v1 t2 H Q,
... →
triple (trm_let x v1 t2) H Q. Hint: you'll need to guess the intermediate postcondition Q1 associated with the let-binding rule, and exploit the appropriate structural rules.
(* FILL IN HERE *)
☐
☐
Reasoning Rule for Functions
{\[]} (trm_fun x t1) {fun r => \[r = val_fun x t1]} |
The rule for recursive functions is similar. It is presented
further in the file.
Last but not least, we need a reasoning rule to reason about a
function application. Consider an application trm_app v1 v2.
Assume v1 to be a function, that is, to be of the form
val_fun x t1. Then, according to the beta-reduction rule, the
semantics of trm_app v1 v2 is the same as that of subst x v2 t1.
This reasoning rule is thus:
The corresponding Coq statement is as shown below.
v1 = val_fun x t1 {H} (subst x v2 t1) {Q} | |
{H} (trm_app v1 v2) {Q} |
Parameter triple_app_fun : ∀ x v1 v2 t1 H Q,
v1 = val_fun x t1 →
triple (subst x v2 t1) H Q →
triple (trm_app v1 v2) H Q.
v1 = val_fun x t1 →
triple (subst x v2 t1) H Q →
triple (trm_app v1 v2) H Q.
The generalization to the application of recursive functions is
straightforward. It is discussed further in this chapter.
Specification of Primitive Operations
Specification of Arithmetic Primitive Operations
The specification of the division operation val_div n1 n2 is similar,
yet with the extra requirement that the argument n2 must be nonzero.
This requirement n2 ≠ 0 is a pure fact, which can be asserted as
part of the precondition, as follows.
Parameter triple_div' : ∀ n1 n2,
triple (val_div n1 n2)
\[n2 ≠ 0]
(fun r ⇒ \[r = val_int (Z.quot n1 n2)]).
triple (val_div n1 n2)
\[n2 ≠ 0]
(fun r ⇒ \[r = val_int (Z.quot n1 n2)]).
Equivalently, the requirement n2 ≠ 0 may be asserted as an
hypothesis to the front of the triple judgment, in the form of
a standard Coq hypothesis, as shown below.
Parameter triple_div : ∀ n1 n2,
n2 ≠ 0 →
triple (val_div n1 n2)
\[]
(fun r ⇒ \[r = val_int (Z.quot n1 n2)]).
n2 ≠ 0 →
triple (val_div n1 n2)
\[]
(fun r ⇒ \[r = val_int (Z.quot n1 n2)]).
This latter presentation with pure facts such as n2 ≠ 0 placed
to the front of the triple turns out to be more practical to exploit
in proofs. Hence, we always follow this style of presentation, and
reserve the precondition for describing pieces of mutable state.
Specification of Primitive Operations Acting on Memory
Parameter triple_get : ∀ v p,
triple (val_get (val_loc p))
(p ~~> v)
(fun r ⇒ \[r = v] \* (p ~~> v)).
triple (val_get (val_loc p))
(p ~~> v)
(fun r ⇒ \[r = v] \* (p ~~> v)).
Remark: val_loc is registered as a coercion, so val_get (val_loc p)
could be written simply as val_get p, where p has type loc.
We here chose to write val_loc explicitly for clarity.
Recall that val_set denotes the operation for writing a memory cell.
A call of the form val_set v' w executes safely if v' is of the
form val_loc p for some location p, in a state p ~~> v.
The write operation updates this state to p ~~> w, and returns
the unit value, which can be ignored. Hence, val_set is specified
as follows.
Recall that val_ref denotes the operation for allocating a cell
with a given contents. A call to val_ref v does not depend on
the contents of the existing state. It extends the state with a fresh
singleton cell, at some location p, assigning it v as contents.
The fresh cell is then described by the heap predicate p ~~> v.
The evaluation of val_ref v produces the value val_loc p. Thus,
if r denotes the result value, we have r = val_loc p for some p.
In the corresponding specification shown below, observe how the
location p is existentially quantified in the postcondition.
Parameter triple_ref : ∀ v,
triple (val_ref v)
\[]
(fun (r:val) ⇒ \∃ (p:loc), \[r = val_loc p] \* p ~~> v).
triple (val_ref v)
\[]
(fun (r:val) ⇒ \∃ (p:loc), \[r = val_loc p] \* p ~~> v).
Using the notation funloc p ⇒ H as a shorthand for
fun (r:val) ⇒ \∃ (p:loc), \[r = val_loc p] \* H,
the specification for val_ref becomes more concise.
Recall that val_free denotes the operation for deallocating a cell
at a given address. A call of the form val_free p executes safely
in a state p ~~> v. The operation leaves an empty state, and
asserts that the return value, named r, is equal to unit.
Verification Proof in Separation Logic
Proof of incr
p := !p + 1 Recall that, for simplicity, we assume programs to be written in "A-normal form", that is, with all intermediate expressions named by a let-binding. Thereafter, we thus consider the following definition for the incr.
let n = !p in
let m = n+1 in
p := m Using the construct from our toy programming language, the definition of incr is written as shown below.
Definition incr : val :=
val_fun "p" (
trm_let "n" (trm_app val_get (trm_var "p")) (
trm_let "m" (trm_app (trm_app val_add
(trm_var "n")) (val_int 1)) (
trm_app (trm_app val_set (trm_var "p")) (trm_var "m")))).
val_fun "p" (
trm_let "n" (trm_app val_get (trm_var "p")) (
trm_let "m" (trm_app (trm_app val_add
(trm_var "n")) (val_int 1)) (
trm_app (trm_app val_set (trm_var "p")) (trm_var "m")))).
Alternatively, using notation and coercions, the same program can be
written as shown below.
Let us check that the two definitions are indeed the same.
Recall from the first chapter the specification of the increment function.
Its precondition requires a singleton state of the form p ~~> n.
Its postcondition describes a state of the form p ~~> (n+1).
We next show a detailed proof for this specification. It exploits:
- the structural reasoning rules,
- the reasoning rules for terms,
- the specification of the primitive functions,
- the xsimpl tactic for simplifying entailments.
Proof using.
(* initialize the proof *)
intros. applys triple_app_fun. { reflexivity. } simpl.
(* reason about let n = .. *)
applys triple_let.
(* reason about !p *)
{ apply triple_get. }
(* name n' the result of !p *)
intros n'. simpl.
(* substitute away the equality n' = n *)
apply triple_hpure. intros →.
(* reason about let m = .. *)
applys triple_let.
(* apply the frame rule to put aside p ~~> n *)
{ applys triple_conseq_frame.
(* reason about n+1 in the empty state *)
{ applys triple_add. }
{ xsimpl. }
{ xsimpl. } }
(* name m' the result of n+1 *)
intros m'. simpl.
(* substitute away the equality m' = m *)
apply triple_hpure. intros →.
(* reason about p := m *)
{ applys triple_set. }
Qed.
(* initialize the proof *)
intros. applys triple_app_fun. { reflexivity. } simpl.
(* reason about let n = .. *)
applys triple_let.
(* reason about !p *)
{ apply triple_get. }
(* name n' the result of !p *)
intros n'. simpl.
(* substitute away the equality n' = n *)
apply triple_hpure. intros →.
(* reason about let m = .. *)
applys triple_let.
(* apply the frame rule to put aside p ~~> n *)
{ applys triple_conseq_frame.
(* reason about n+1 in the empty state *)
{ applys triple_add. }
{ xsimpl. }
{ xsimpl. } }
(* name m' the result of n+1 *)
intros m'. simpl.
(* substitute away the equality m' = m *)
apply triple_hpure. intros →.
(* reason about p := m *)
{ applys triple_set. }
Qed.
Definition succ_using_incr : val :=
<{ fun 'n ⇒
let 'r = val_ref 'n in
incr 'r;
let 'x = ! 'r in
val_free 'r;
'x }>.
<{ fun 'n ⇒
let 'r = val_ref 'n in
incr 'r;
let 'x = ! 'r in
val_free 'r;
'x }>.
Recall the specification of succ_using_incr.
Lemma triple_succ_using_incr : ∀ (n:int),
triple (trm_app succ_using_incr n)
\[]
(fun v ⇒ \[v = val_int (n+1)]).
triple (trm_app succ_using_incr n)
\[]
(fun v ⇒ \[v = val_int (n+1)]).
Exercise: 4 stars, standard, especially useful (triple_succ_using_incr)
Verify the function triple_succ_using_incr. Hint: follow the pattern of triple_incr. Hint: use applys triple_seq for reasoning about a sequence. Hint: use applys triple_val for reasoning about the final return value, namely x.
Proof using. (* FILL IN HERE *) Admitted.
☐
☐
Recall from Basic the function repeat_incr.
let rec factorec n =
if n ≤ 1 then 1 else n * factorec (n-1)
if n ≤ 1 then 1 else n * factorec (n-1)
Definition factorec : val :=
<{ fix 'f 'n ⇒
let 'b = ('n ≤ 1) in
if 'b
then 1
else let 'x = 'n - 1 in
let 'y = 'f 'x in
'n * 'y }>.
<{ fix 'f 'n ⇒
let 'b = ('n ≤ 1) in
if 'b
then 1
else let 'x = 'n - 1 in
let 'y = 'f 'x in
'n * 'y }>.
Exercise: 4 stars, standard, especially useful (triple_factorec)
Verify the function factorec. Hint: exploit triple_app_fix for reasoning about the recursive function. Hint: triple_hpure', the corollary of triple_hpure, is helpful. Hint: exploit triple_le and triple_sub and triple_mul to reason about the behavior of the primitive operations involved. Hint: exploit applys triple_if. case_if as C. to reason about the conditional; alternatively, if using triple_if_case, you'll need to use the tactic rew_bool_eq in * to simplify, e.g., the expression isTrue (m ≤ 1)) = true.
Lemma triple_factorec : ∀ n,
n ≥ 0 →
triple (factorec n)
\[]
(fun r ⇒ \[r = facto n]).
Proof using. (* FILL IN HERE *) Admitted.
☐
n ≥ 0 →
triple (factorec n)
\[]
(fun r ⇒ \[r = facto n]).
Proof using. (* FILL IN HERE *) Admitted.
☐
What's Next
- automating the application of the frame rule
- eliminating the need to manipulate program variables and substitutions during the verification proof.
Recall the specification for division.
Parameter triple_div : ∀ n1 n2,
n2 ≠ 0 →
triple (val_div n1 n2)
\[]
(fun r ⇒ \[r = val_int (Z.quot n1 n2)]).
n2 ≠ 0 →
triple (val_div n1 n2)
\[]
(fun r ⇒ \[r = val_int (Z.quot n1 n2)]).
Equivalently, we could place the requirement n2 ≠ 0 in the
precondition:
Parameter triple_div' : ∀ n1 n2,
triple (val_div n1 n2)
\[n2 ≠ 0]
(fun r ⇒ \[r = val_int (Z.quot n1 n2)]).
triple (val_div n1 n2)
\[n2 ≠ 0]
(fun r ⇒ \[r = val_int (Z.quot n1 n2)]).
Let us formally prove that the two presentations are equivalent.
Frist, we prove triple_div' by exploiting triple_div.
Lemma triple_div'_from_triple_div : ∀ n1 n2,
triple (val_div n1 n2)
\[n2 ≠ 0]
(fun r ⇒ \[r = val_int (Z.quot n1 n2)]).
Proof using.
intros. applys triple_hpure'. applys triple_div.
Qed.
triple (val_div n1 n2)
\[n2 ≠ 0]
(fun r ⇒ \[r = val_int (Z.quot n1 n2)]).
Proof using.
intros. applys triple_hpure'. applys triple_div.
Qed.
Exercise: 1 star, standard, especially useful (triple_div_from_triple_div')
Prove triple_div by exploiting triple_div'. Hint: the key proof step is applys triple_conseq
Lemma triple_div_from_triple_div' : ∀ n1 n2,
n2 ≠ 0 →
triple (val_div n1 n2)
\[]
(fun r ⇒ \[r = val_int (Z.quot n1 n2)]).
Proof using. (* FILL IN HERE *) Admitted.
☐
n2 ≠ 0 →
triple (val_div n1 n2)
\[]
(fun r ⇒ \[r = val_int (Z.quot n1 n2)]).
Proof using. (* FILL IN HERE *) Admitted.
☐
Recall the Separation Logic let rule.
Parameter triple_let : ∀ x t1 t2 Q1 H Q,
triple t1 H Q1 →
(∀ v1, triple (subst x v1 t2) (Q1 v1) Q) →
triple (trm_let x t1 t2) H Q.
triple t1 H Q1 →
(∀ v1, triple (subst x v1 t2) (Q1 v1) Q) →
triple (trm_let x t1 t2) H Q.
At first sight, it seems that, to reason about let x = t1 in t2
in a state described by precondition H, we need to first reason
about t1 in that same state. Yet, t1 may well require only a
subset of the state H to evaluate, and not all of H.
The "let-frame" rule combines the rule for let-bindings with the
frame rule to make it more explicit that the precondition H
may be decomposed in the form H1 \* H2, where H1 is the part
needed by t1, and H2 denotes the rest of the state. The part
of the state covered by H2 remains unmodified during the evaluation
of t1, and appears as part of the precondition of t2.
The corresponding statement is as follows.
Lemma triple_let_frame : ∀ x t1 t2 Q1 H H1 H2 Q,
triple t1 H1 Q1 →
H ==> H1 \* H2 →
(∀ v1, triple (subst x v1 t2) (Q1 v1 \* H2) Q) →
triple (trm_let x t1 t2) H Q.
triple t1 H1 Q1 →
H ==> H1 \* H2 →
(∀ v1, triple (subst x v1 t2) (Q1 v1 \* H2) Q) →
triple (trm_let x t1 t2) H Q.
Proof using. (* FILL IN HERE *) Admitted.
☐
☐
The proofs for the Separation Logic reasoning rules all follow
a similar pattern: first establish a corresponding rule for
Hoare triples, then generalize it to a Separation Logic triple.
To establish a reasoning rule w.r.t. a Hoare triple, we reveal
the definition expressed in terms of the big-step semantics.
Definition hoare (t:trm) (H:hprop) (Q:val→hprop) : Prop :=
∀ s, H s →
∃ s' v, eval s t s' v ∧ Q v s'. Concretely, we consider a given initial state s satisfying the precondition, and we have to provide witnesses for the output value v and output state s' such that the reduction holds and the postcondition holds.
Then, to lift the reasoning rule from Hoare logic to Separation
Logic, we reveal the definition of a Separation Logic triple.
Definition triple t H Q :=
∀ H', hoare t (H \* H') (Q \*+ H'). Recall that we already employed this two-step scheme in the previous chapter, e.g., to establish the consequence rule (rule_conseq).
Definition hoare (t:trm) (H:hprop) (Q:val→hprop) : Prop :=
∀ s, H s →
∃ s' v, eval s t s' v ∧ Q v s'. Concretely, we consider a given initial state s satisfying the precondition, and we have to provide witnesses for the output value v and output state s' such that the reduction holds and the postcondition holds.
Definition triple t H Q :=
∀ H', hoare t (H \* H') (Q \*+ H'). Recall that we already employed this two-step scheme in the previous chapter, e.g., to establish the consequence rule (rule_conseq).
Proof of triple_val
The Hoare version of the reasoning rule for values is as follows.
1. We unfold the definition of hoare.
introv M. intros s K0.
2. We provide the witnesses for the output value and heap.
These witnesses are dictated by the statement of eval_val.
∃ s v. splits.
3. We invoke the big-step rule eval_val
4. We establish the postcondition, exploiting the entailment hypothesis.
{ applys M. auto. }
Qed.
Qed.
The Separation Logic version of the rule then follows.
1. We unfold the definition of triple to reveal a hoare judgment.
introv M. intros H'.
2. We invoke the reasoning rule hoare_val that was just established.
3. We exploit the assumption and conclude using xchange.
xchange M.
Qed.
Qed.
Parameter eval_seq : ∀ s1 s2 s3 t1 t2 v1 v,
eval s1 t1 s2 v1 →
eval s2 t2 s3 v →
eval s1 (trm_seq t1 t2) s3 v.
eval s1 t1 s2 v1 →
eval s2 t2 s3 v →
eval s1 (trm_seq t1 t2) s3 v.
The Hoare triple version of the reasoning rule is proved as follows.
This lemma, called hoare_seq, has the same statement as triple_seq,
except with occurrences of triple replaced with hoare.
Lemma hoare_seq : ∀ t1 t2 H Q H1,
hoare t1 H (fun v ⇒ H1) →
hoare t2 H1 Q →
hoare (trm_seq t1 t2) H Q.
Proof using.
hoare t1 H (fun v ⇒ H1) →
hoare t2 H1 Q →
hoare (trm_seq t1 t2) H Q.
Proof using.
1. We unfold the definition of hoare.
Let K0 describe the initial state.
2. We exploit the first hypothesis to obtain information about
the evaluation of the first subterm t1.
The state before t1 executes is described by K0.
The state after t1 executes is described by K1.
forwards (s1'&v1&R1&K1): (rm M1) K0.
3. We exploit the second hypothesis to obtain information about
the evaluation of the first subterm t2.
The state before t2 executes is described by K1.
The state after t2 executes is described by K2.
forwards (s2'&v2&R2&K2): (rm M2) K1.
4. We provide witness for the output value and heap.
They correspond to those produced by the evaluation of t2.
∃ s2' v2. split.
5. We invoke the big-step rule.
6. We establish the final postcondition, which is directly
inherited from the reasoning on t2.
{ apply K2. }
Qed.
Qed.
The Separation Logic reasoning rule is proved as follows.
Lemma triple_seq : ∀ t1 t2 H Q H1,
triple t1 H (fun v ⇒ H1) →
triple t2 H1 Q →
triple (trm_seq t1 t2) H Q.
Proof using.
triple t1 H (fun v ⇒ H1) →
triple t2 H1 Q →
triple (trm_seq t1 t2) H Q.
Proof using.
1. We unfold the definition of triple to reveal a hoare judgment.
2. We invoke the reasoning rule hoare_seq that we just established.
3. For the hypothesis on the first subterm t1,
we can invoke directly our first hypothesis.
{ applys M1. }
4. Likewise, we invoke an induction hypothesis for t2.
{ applys M2. }
Qed.
Qed.
Parameter eval_let : ∀ s1 s2 s3 x t1 t2 v1 v,
eval s1 t1 s2 v1 →
eval s2 (subst x v1 t2) s3 v →
eval s1 (trm_let x t1 t2) s3 v.
eval s1 t1 s2 v1 →
eval s2 (subst x v1 t2) s3 v →
eval s1 (trm_let x t1 t2) s3 v.
Exercise: 3 stars, standard, especially useful (triple_let)
Following the same proof scheme as for triple_seq, establish the reasoning rule for triple_let, whose statement appears earlier in this file. Make sure to first state and prove the lemma hoare_let, which has the same statement as triple_let yet with occurrences of triple replaced with hoare.
(* FILL IN HERE *)
☐
☐
In the proof, we will need to use the following result,
established in the first chapter.
As usual, we first establish a Hoare triple.
Lemma hoare_add : ∀ H n1 n2,
hoare (val_add n1 n2)
H
(fun r ⇒ \[r = val_int (n1 + n2)] \* H).
Proof using.
intros. intros s K0. ∃ s (val_int (n1 + n2)). split.
{ applys eval_add. }
{ rewrite hstar_hpure_l. split.
{ auto. }
{ applys K0. } }
Qed.
hoare (val_add n1 n2)
H
(fun r ⇒ \[r = val_int (n1 + n2)] \* H).
Proof using.
intros. intros s K0. ∃ s (val_int (n1 + n2)). split.
{ applys eval_add. }
{ rewrite hstar_hpure_l. split.
{ auto. }
{ applys K0. } }
Qed.
Deriving triple_add is then straightforward.
Lemma triple_add : ∀ n1 n2,
triple (val_add n1 n2)
\[]
(fun r ⇒ \[r = val_int (n1 + n2)]).
Proof using.
intros. intros H'. applys hoare_conseq.
{ applys hoare_add. } { xsimpl. } { xsimpl. auto. }
Qed.
triple (val_add n1 n2)
\[]
(fun r ⇒ \[r = val_int (n1 + n2)]).
Proof using.
intros. intros H'. applys hoare_conseq.
{ applys hoare_add. } { xsimpl. } { xsimpl. auto. }
Qed.
Parameter eval_div' : ∀ s n1 n2,
n2 ≠ 0 →
eval s (val_div (val_int n1) (val_int n2)) s (val_int (Z.quot n1 n2)).
n2 ≠ 0 →
eval s (val_div (val_int n1) (val_int n2)) s (val_int (Z.quot n1 n2)).
Exercise: 3 stars, standard, optional (triple_div)
Following the same proof scheme as for triple_add, establish the reasoning rule for triple_div. Make sure to first state and prove hoare_div, which is similar to triple_div, except with hoare instead of triple, and with a precondition named H for describing the input state.
(* FILL IN HERE *)
☐
☐
Proofs for Primitive Operations Operating on the State
Inductive hval : Type :=
| hval_val : val → hval.
Read in a Reference
Parameter eval_get : ∀ v s p,
Fmap.indom s p →
Fmap.read s p = v →
eval s (val_get (val_loc p)) s v.
Fmap.indom s p →
Fmap.read s p = v →
eval s (val_get (val_loc p)) s v.
We reformulate this rule by isolating from the current state s
the singleton heap made of the cell at location p, and let s2
denote the rest of the heap. When the singleton heap is described
as Fmap.single p v, then v is the result value returned by
get p.
Lemma eval_get_sep : ∀ s s2 p v,
s = Fmap.union (Fmap.single p v) s2 →
eval s (val_get (val_loc p)) s v.
s = Fmap.union (Fmap.single p v) s2 →
eval s (val_get (val_loc p)) s v.
The proof of this lemma is of little interest. We show it only to
demonstrate that it relies only a few basic facts related to finite
maps.
Proof using.
introv →. forwards Dv: Fmap.indom_single p v.
applys eval_get.
{ applys* Fmap.indom_union_l. }
{ rewrite* Fmap.read_union_l. rewrite* Fmap.read_single. }
Qed.
introv →. forwards Dv: Fmap.indom_single p v.
applys eval_get.
{ applys* Fmap.indom_union_l. }
{ rewrite* Fmap.read_union_l. rewrite* Fmap.read_single. }
Qed.
Our goal is to establish the triple:
triple (val_get p)
(p ~~> v)
(fun r ⇒ \[r = v] \* (p ~~> v)). Establishing this lemma requires us to reason about propositions of the form (\[P] \* H) h and (p ~~> v) h. To that end, recall lemma hstar_hpure_l, which was already exploited in the proof of triple_add, and recall hsingle_inv from Hprop.
triple (val_get p)
(p ~~> v)
(fun r ⇒ \[r = v] \* (p ~~> v)). Establishing this lemma requires us to reason about propositions of the form (\[P] \* H) h and (p ~~> v) h. To that end, recall lemma hstar_hpure_l, which was already exploited in the proof of triple_add, and recall hsingle_inv from Hprop.
We establish the specification of get first w.r.t. to
the hoare judgment.
Lemma hoare_get : ∀ H v p,
hoare (val_get p)
((p ~~> v) \* H)
(fun r ⇒ \[r = v] \* (p ~~> v) \* H).
Proof using.
(* 1. We unfold the definition of hoare. *)
intros. intros s K0.
(* 2. We provide the witnesses for the reduction,
as dictated by eval_get_sep. *)
∃ s v. split.
{ (* 3. To justify the reduction using eval_get_sep, we need to
argue that the state s decomposes as a singleton heap
Fmap.single p v and the rest of the state s2. This is
obtained by eliminating the star in hypothesis K0. *)
destruct K0 as (s1&s2&P1&P2&D&U).
(* 4. Inverting (p ~~> v) h1 simplifies the goal. *)
lets E1: hsingle_inv P1. subst s1.
(* 5. At this point, the goal matches exactly eval_get_sep. *)
applys eval_get_sep U. }
{ (* 6. To establish the postcondition, we check the pure fact
\v = v, and check that the state, which has not changed,
satisfies the same heap predicate as in the precondition. *)
rewrite hstar_hpure_l. auto. }
Qed.
hoare (val_get p)
((p ~~> v) \* H)
(fun r ⇒ \[r = v] \* (p ~~> v) \* H).
Proof using.
(* 1. We unfold the definition of hoare. *)
intros. intros s K0.
(* 2. We provide the witnesses for the reduction,
as dictated by eval_get_sep. *)
∃ s v. split.
{ (* 3. To justify the reduction using eval_get_sep, we need to
argue that the state s decomposes as a singleton heap
Fmap.single p v and the rest of the state s2. This is
obtained by eliminating the star in hypothesis K0. *)
destruct K0 as (s1&s2&P1&P2&D&U).
(* 4. Inverting (p ~~> v) h1 simplifies the goal. *)
lets E1: hsingle_inv P1. subst s1.
(* 5. At this point, the goal matches exactly eval_get_sep. *)
applys eval_get_sep U. }
{ (* 6. To establish the postcondition, we check the pure fact
\v = v, and check that the state, which has not changed,
satisfies the same heap predicate as in the precondition. *)
rewrite hstar_hpure_l. auto. }
Qed.
Deriving the Separation Logic triple follows the usual pattern.
Lemma triple_get : ∀ v p,
triple (val_get p)
(p ~~> v)
(fun r ⇒ \[r = v] \* (p ~~> v)).
Proof using.
intros. intros H'. applys hoare_conseq.
{ applys hoare_get. }
{ xsimpl. }
{ xsimpl. auto. }
Qed.
triple (val_get p)
(p ~~> v)
(fun r ⇒ \[r = v] \* (p ~~> v)).
Proof using.
intros. intros H'. applys hoare_conseq.
{ applys hoare_get. }
{ xsimpl. }
{ xsimpl. auto. }
Qed.
Allocation of a Reference
Parameter eval_ref : ∀ s v p,
¬ Fmap.indom s p →
eval s (val_ref v) (Fmap.update s p v) (val_loc p).
¬ Fmap.indom s p →
eval s (val_ref v) (Fmap.update s p v) (val_loc p).
Let us reformulate eval_ref to replace references to Fmap.indom
and Fmap.update with references to Fmap.single and Fmap.disjoint.
Concretely, ref v extends the state from s1 to s1 \u s2,
where s2 denotes the singleton heap Fmap.single p v, and with
the requirement that Fmap.disjoint s2 s1, to capture freshness.
Lemma eval_ref_sep : ∀ s1 s2 v p,
s2 = Fmap.single p v →
Fmap.disjoint s2 s1 →
eval s1 (val_ref v) (Fmap.union s2 s1) (val_loc p).
Proof using.
s2 = Fmap.single p v →
Fmap.disjoint s2 s1 →
eval s1 (val_ref v) (Fmap.union s2 s1) (val_loc p).
Proof using.
It is not needed to follow through this proof.
introv → D. forwards Dv: Fmap.indom_single p v.
rewrite <- Fmap.update_eq_union_single. applys* eval_ref.
{ intros N. applys* Fmap.disjoint_inv_not_indom_both D N. }
Qed.
rewrite <- Fmap.update_eq_union_single. applys* eval_ref.
{ intros N. applys* Fmap.disjoint_inv_not_indom_both D N. }
Qed.
In order to apply the rules eval_ref or eval_ref_sep, we need
to be able to synthetize fresh locations. The following lemma
(from LibSepFmap.v) captures the existence, for any state s, of
a (non-null) location p not already bound in s.
We reformulate the lemma above in a way that better matches
the premise of the lemma eval_ref_sep, which we need to apply
for establishing the specification of ref.
This reformulation, shown below, asserts that, for any h,
there existence a non-null location p such that the singleton
heap Fmap.single p v is disjoint from h.
It is not needed to follow through this proof.
The proof of the Hoare triple for ref is as follows.
Lemma hoare_ref : ∀ H v,
hoare (val_ref v)
H
(fun r ⇒ (\∃ p, \[r = val_loc p] \* p ~~> v) \* H).
Proof using.
(* 1. We unfold the definition of hoare. *)
intros. intros s1 K0.
(* 2. We claim the disjointness relation
Fmap.disjoint (Fmap.single p v) s1. *)
forwards* (p&D): (single_fresh s1 v).
(* 3. We provide the witnesses for the reduction,
as dictated by eval_ref_sep. *)
∃ ((Fmap.single p v) \u s1) (val_loc p). split.
{ (* 4. We exploit eval_ref_sep, which has exactly the desired shape! *)
applys eval_ref_sep D. auto. }
{ (* 5. We establish the postcondition
(\∃ p, \[r = val_loc p] \* p ~~> v) \* H
by providing p and the relevant pieces of heap. *)
applys hstar_intro.
{ ∃ p. rewrite hstar_hpure_l.
split. { auto. } { applys¬hsingle_intro. } }
{ applys K0. }
{ applys D. } }
Qed.
hoare (val_ref v)
H
(fun r ⇒ (\∃ p, \[r = val_loc p] \* p ~~> v) \* H).
Proof using.
(* 1. We unfold the definition of hoare. *)
intros. intros s1 K0.
(* 2. We claim the disjointness relation
Fmap.disjoint (Fmap.single p v) s1. *)
forwards* (p&D): (single_fresh s1 v).
(* 3. We provide the witnesses for the reduction,
as dictated by eval_ref_sep. *)
∃ ((Fmap.single p v) \u s1) (val_loc p). split.
{ (* 4. We exploit eval_ref_sep, which has exactly the desired shape! *)
applys eval_ref_sep D. auto. }
{ (* 5. We establish the postcondition
(\∃ p, \[r = val_loc p] \* p ~~> v) \* H
by providing p and the relevant pieces of heap. *)
applys hstar_intro.
{ ∃ p. rewrite hstar_hpure_l.
split. { auto. } { applys¬hsingle_intro. } }
{ applys K0. }
{ applys D. } }
Qed.
We then derive the Separation Logic triple as usual.
Lemma triple_ref : ∀ v,
triple (val_ref v)
\[]
(funloc p ⇒ p ~~> v).
Proof using.
intros. intros H'. applys hoare_conseq.
{ applys hoare_ref. }
{ xsimpl. }
{ xsimpl. auto. }
Qed.
End Proofs.
triple (val_ref v)
\[]
(funloc p ⇒ p ~~> v).
Proof using.
intros. intros H'. applys hoare_conseq.
{ applys hoare_ref. }
{ xsimpl. }
{ xsimpl. auto. }
Qed.
End Proofs.
Reasoning Rules for Recursive Functions
The reasoning rule that corresponds to beta-reduction for
a recursive function involves two substitutions: a first
substitution for recursive occurrences of the function,
followed with a second substitution for the argument
provided to the call.
Parameter triple_app_fix : ∀ v1 v2 f x t1 H Q,
v1 = val_fix f x t1 →
triple (subst x v2 (subst f v1 t1)) H Q →
triple (trm_app v1 v2) H Q.
v1 = val_fix f x t1 →
triple (subst x v2 (subst f v1 t1)) H Q →
triple (trm_app v1 v2) H Q.
Proof of triple_fun and triple_fix
Proof of triple_if
Lemma eval_if : ∀ s1 s2 b v t1 t2,
eval s1 (if b then t1 else t2) s2 v →
eval s1 (trm_if b t1 t2) s2 v.
Proof using.
intros. case_if; applys eval_if; auto_false.
Qed.
eval s1 (if b then t1 else t2) s2 v →
eval s1 (trm_if b t1 t2) s2 v.
Proof using.
intros. case_if; applys eval_if; auto_false.
Qed.
The reasoning rule for conditional w.r.t. Hoare triples is as follows.
Lemma hoare_if_case : ∀ b t1 t2 H Q,
(b = true → hoare t1 H Q) →
(b = false → hoare t2 H Q) →
hoare (trm_if b t1 t2) H Q.
Proof using.
introv M1 M2. intros s K0. destruct b.
{ forwards* (s1'&v1&R1&K1): (rm M1) K0.
∃ s1' v1. split*. { applys* eval_if. } }
{ forwards* (s1'&v1&R1&K1): (rm M2) K0.
∃ s1' v1. split*. { applys* eval_if. } }
Qed.
(b = true → hoare t1 H Q) →
(b = false → hoare t2 H Q) →
hoare (trm_if b t1 t2) H Q.
Proof using.
introv M1 M2. intros s K0. destruct b.
{ forwards* (s1'&v1&R1&K1): (rm M1) K0.
∃ s1' v1. split*. { applys* eval_if. } }
{ forwards* (s1'&v1&R1&K1): (rm M2) K0.
∃ s1' v1. split*. { applys* eval_if. } }
Qed.
The corresponding Separation Logic reasoning rule is as follows.
Lemma triple_if_case : ∀ b t1 t2 H Q,
(b = true → triple t1 H Q) →
(b = false → triple t2 H Q) →
triple (trm_if (val_bool b) t1 t2) H Q.
Proof using.
unfold triple. introv M1 M2. intros H'.
applys hoare_if_case; intros Eb.
{ applys* M1. }
{ applys* M2. }
Qed.
(b = true → triple t1 H Q) →
(b = false → triple t2 H Q) →
triple (trm_if (val_bool b) t1 t2) H Q.
Proof using.
unfold triple. introv M1 M2. intros H'.
applys hoare_if_case; intros Eb.
{ applys* M1. }
{ applys* M2. }
Qed.
Observe that the above proofs contain a fair amount of duplication,
due to the symmetry between the b = true and b = false branches.
If we state the reasoning rules using Coq's conditional just like
it appears in the evaluation rule eval_if, we can better factorize
the proof script.
Lemma hoare_if : ∀ (b:bool) t1 t2 H Q,
hoare (if b then t1 else t2) H Q →
hoare (trm_if b t1 t2) H Q.
Proof using.
introv M1. intros s K0.
forwards (s'&v&R1&K1): (rm M1) K0.
∃ s' v. split. { applys eval_if R1. } { applys K1. }
Qed.
Lemma triple_if : ∀ b t1 t2 H Q,
triple (if b then t1 else t2) H Q →
triple (trm_if (val_bool b) t1 t2) H Q.
Proof using.
unfold triple. introv M1. intros H'. applys hoare_if. applys M1.
Qed.
hoare (if b then t1 else t2) H Q →
hoare (trm_if b t1 t2) H Q.
Proof using.
introv M1. intros s K0.
forwards (s'&v&R1&K1): (rm M1) K0.
∃ s' v. split. { applys eval_if R1. } { applys K1. }
Qed.
Lemma triple_if : ∀ b t1 t2 H Q,
triple (if b then t1 else t2) H Q →
triple (trm_if (val_bool b) t1 t2) H Q.
Proof using.
unfold triple. introv M1. intros H'. applys hoare_if. applys M1.
Qed.
Proof of triple_app_fun
Parameter eval_app_fun : ∀ s1 s2 v1 v2 x t1 v,
v1 = val_fun x t1 →
eval s1 (subst x v2 t1) s2 v →
eval s1 (trm_app v1 v2) s2 v.
v1 = val_fun x t1 →
eval s1 (subst x v2 t1) s2 v →
eval s1 (trm_app v1 v2) s2 v.
Lemma hoare_app_fun : ∀ v1 v2 x t1 H Q,
v1 = val_fun x t1 →
hoare (subst x v2 t1) H Q →
hoare (trm_app v1 v2) H Q.
Proof using. (* FILL IN HERE *) Admitted.
☐
v1 = val_fun x t1 →
hoare (subst x v2 t1) H Q →
hoare (trm_app v1 v2) H Q.
Proof using. (* FILL IN HERE *) Admitted.
☐
Lemma triple_app_fun : ∀ x v1 v2 t1 H Q,
v1 = val_fun x t1 →
triple (subst x v2 t1) H Q →
triple (trm_app v1 v2) H Q.
Proof using. (* FILL IN HERE *) Admitted.
☐
v1 = val_fun x t1 →
triple (subst x v2 t1) H Q →
triple (trm_app v1 v2) H Q.
Proof using. (* FILL IN HERE *) Admitted.
☐
Deallocation of a Reference
Parameter eval_free : ∀ s p,
Fmap.indom s p →
eval s (val_set (val_loc p)) (Fmap.remove s p) val_unit.
Fmap.indom s p →
eval s (val_set (val_loc p)) (Fmap.remove s p) val_unit.
Let us reformulate eval_free to replace references to Fmap.indom
and Fmap.remove with references to Fmap.single and Fmap.union
and Fmap.disjoint. The details are not essential, thus omitted.
Parameter eval_free_sep : ∀ s1 s2 v p,
s1 = Fmap.union (Fmap.single p v) s2 →
Fmap.disjoint (Fmap.single p v) s2 →
eval s1 (val_free p) s2 val_unit.
s1 = Fmap.union (Fmap.single p v) s2 →
Fmap.disjoint (Fmap.single p v) s2 →
eval s1 (val_free p) s2 val_unit.
Exercise: 3 stars, standard, optional (hoare_free)
Prove the Hoare triple for the operation free. Hint: exploit the lemma eval_free_sep.
Lemma hoare_free : ∀ H p v,
hoare (val_free (val_loc p))
((p ~~> v) \* H)
(fun _ ⇒ H).
Proof using. (* FILL IN HERE *) Admitted.
☐
hoare (val_free (val_loc p))
((p ~~> v) \* H)
(fun _ ⇒ H).
Proof using. (* FILL IN HERE *) Admitted.
☐
Exercise: 1 star, standard, optional (triple_free)
Derive from the Hoare triple for the operation free the corresponding Separation Logic triple. Hint: adapt the proof of lemma triple_set.
Lemma triple_free : ∀ p v,
triple (val_free (val_loc p))
(p ~~> v)
(fun _ ⇒ \[]).
Proof using. (* FILL IN HERE *) Admitted.
☐
triple (val_free (val_loc p))
(p ~~> v)
(fun _ ⇒ \[]).
Proof using. (* FILL IN HERE *) Admitted.
☐
Write in a Reference
Parameter eval_set : ∀ m p v,
Fmap.indom m p →
eval m (val_set (val_loc p) v) (Fmap.update m p v) val_unit.
Fmap.indom m p →
eval m (val_set (val_loc p) v) (Fmap.update m p v) val_unit.
As for get, we first reformulate this lemma, to replace
references to Fmap.indom and Fmap.update with references
to Fmap.union, Fmap.single, and Fmap.disjoint, to
prepare for the introduction of separating conjunctions.
Lemma eval_set_sep : ∀ s1 s2 h2 p v1 v2,
s1 = Fmap.union (Fmap.single p v1) h2 →
s2 = Fmap.union (Fmap.single p v2) h2 →
Fmap.disjoint (Fmap.single p v1) h2 →
eval s1 (val_set (val_loc p) v2) s2 val_unit.
Proof using.
s1 = Fmap.union (Fmap.single p v1) h2 →
s2 = Fmap.union (Fmap.single p v2) h2 →
Fmap.disjoint (Fmap.single p v1) h2 →
eval s1 (val_set (val_loc p) v2) s2 val_unit.
Proof using.
It is not needed to follow through this proof.
introv → → D. forwards Dv: Fmap.indom_single p v1.
applys_eq eval_set.
{ rewrite* Fmap.update_union_l. f_equal.
rewrite* Fmap.update_single. }
{ applys* Fmap.indom_union_l. }
Qed.
applys_eq eval_set.
{ rewrite* Fmap.update_union_l. f_equal.
rewrite* Fmap.update_single. }
{ applys* Fmap.indom_union_l. }
Qed.
The proof of the Hoare rule for set makes use of the following
fact (from LibSepFmap.v) about Fmap.disjoint: when one of its argument
is a singleton map, the value stored in that singleton map is irrelevant.
Check Fmap.disjoint_single_set : ∀ p v1 v2 h2,
Fmap.disjoint (Fmap.single p v1) h2 →
Fmap.disjoint (Fmap.single p v2) h2.
Check Fmap.disjoint_single_set : ∀ p v1 v2 h2,
Fmap.disjoint (Fmap.single p v1) h2 →
Fmap.disjoint (Fmap.single p v2) h2.
Exercise: 5 stars, standard, optional (hoare_set)
Prove the lemma hoare_set. Hints:- exploit the evaluation rule eval_set_sep presented above,
- exploit the lemma Fmap.disjoint_single_set presented above,
- to obtain an elegant proof, prefer invoking the lemmas hsingle_intro, hsingle_inv, hstar_intro, and hstar_inv, rather than unfolding the definitions of hstar and hsingle.
Lemma hoare_set : ∀ H v p v',
hoare (val_set (val_loc p) v)
((p ~~> v') \* H)
(fun _ ⇒ (p ~~> v) \* H).
Proof using. (* FILL IN HERE *) Admitted.
☐
hoare (val_set (val_loc p) v)
((p ~~> v') \* H)
(fun _ ⇒ (p ~~> v) \* H).
Proof using. (* FILL IN HERE *) Admitted.
☐
Lemma triple_set : ∀ w p v,
triple (val_set (val_loc p) w)
(p ~~> v)
(fun _ ⇒ p ~~> w).
Proof using.
intros. intros H'. applys hoare_set.
Qed.
End ProofsContinued.
triple (val_set (val_loc p) w)
(p ~~> v)
(fun _ ⇒ p ~~> w).
Proof using.
intros. intros H'. applys hoare_set.
Qed.
End ProofsContinued.
The proof that, e.g., triple_add is a consequence of
hoare_add follows the same pattern as many other similar
proofs, each time invoking the lemma hoare_conseq.
Thus, we could attempt at factorizing this proof pattern.
The following lemma corresponds to such an attempt.
Exercise: 2 stars, standard, optional (triple_of_hoare)
Prove the lemma triple_of_hoare stated below.
Lemma triple_of_hoare : ∀ t H Q,
(∀ H', ∃ Q', hoare t (H \* H') Q'
∧ Q' ===> Q \*+ H') →
triple t H Q.
Proof using. (* FILL IN HERE *) Admitted.
☐
(∀ H', ∃ Q', hoare t (H \* H') Q'
∧ Q' ===> Q \*+ H') →
triple t H Q.
Proof using. (* FILL IN HERE *) Admitted.
☐
Exercise: 2 stars, standard, optional (triple_add')
Prove that triple_add is a consequence of hoare_add by exploiting triple_of_hoare.
Lemma triple_add' : ∀ n1 n2,
triple (val_add n1 n2)
\[]
(fun r ⇒ \[r = val_int (n1 + n2)]).
Proof using. (* FILL IN HERE *) Admitted.
☐
triple (val_add n1 n2)
\[]
(fun r ⇒ \[r = val_int (n1 + n2)]).
Proof using. (* FILL IN HERE *) Admitted.
☐
A general principle is that if t1 has the same semantics
as t2 (w.r.t. the big-step evaluation judgment eval),
then t1 and t2 satisfy the same triples.
Let us formalize this principle.
Two (closed) terms are semantically equivalent, written
trm_equiv t1 t2, if two terms, when evaluated in the same
state, produce the same output.
Two terms that are equivalent satisfy the same Separation Logic
triples (and the same Hoare triples).
Indeed, the definition of a Separation Logic triple directly depends
on the notion of Hoare triple, and the latter directly depends
on the semantics captured by the predicate eval.
Let us formalize the result in three steps.
eval_like t1 t2 asserts that t2 evaluates like t1.
In particular, this relation hold whenever t2 reduces
in small-step to t1.
For example eval_like t (trm_let x t x) holds, reflecting the
fact that let x = t in x reduces in small-step to t.
Lemma eval_like_eta_reduction : ∀ (t:trm) (x:var),
eval_like t (trm_let x t x).
Proof using.
introv R. applys eval_let R.
simpl. rewrite var_eq_spec. case_if. applys eval_val.
Qed.
eval_like t (trm_let x t x).
Proof using.
introv R. applys eval_let R.
simpl. rewrite var_eq_spec. case_if. applys eval_val.
Qed.
It turns out that the symmetric relation eval_like (trm_let x t x) t
also holds: the term t does not exhibit more behaviors than those
of let x = t in x.
Lemma eval_like_eta_expansion : ∀ (t:trm) (x:var),
eval_like (trm_let x t x) t.
Proof using.
introv R. inverts R as. introv R1 R2.
simpl in R2. rewrite var_eq_spec in R2. case_if.
inverts R2. auto.
Qed.
eval_like (trm_let x t x) t.
Proof using.
introv R. inverts R as. introv R1 R2.
simpl in R2. rewrite var_eq_spec in R2. case_if.
inverts R2. auto.
Qed.
We deduce that a term t denotes a program equivalent to
the program let x = t in x.
Lemma trm_equiv_eta : ∀ (t:trm) (x:var),
trm_equiv t (trm_let x t x).
Proof using.
intros. intros s s' v. iff M.
{ applys eval_like_eta_reduction M. }
{ applys eval_like_eta_expansion M. }
Qed.
trm_equiv t (trm_let x t x).
Proof using.
intros. intros s s' v. iff M.
{ applys eval_like_eta_reduction M. }
{ applys eval_like_eta_expansion M. }
Qed.
If eval_like t1 t2, then any triple that holds for t1
also holds for t2.
Lemma hoare_eval_like : ∀ t1 t2 H Q,
eval_like t1 t2 →
hoare t1 H Q →
hoare t2 H Q.
Proof using.
introv E M1 K0. forwards (s'&v&R1&K1): M1 K0.
∃ s' v. split. { applys E R1. } { applys K1. }
Qed.
Lemma triple_eval_like : ∀ t1 t2 H Q,
eval_like t1 t2 →
triple t1 H Q →
triple t2 H Q.
Proof using.
introv E M1. intros H'. applys hoare_eval_like E. applys M1.
Qed.
eval_like t1 t2 →
hoare t1 H Q →
hoare t2 H Q.
Proof using.
introv E M1 K0. forwards (s'&v&R1&K1): M1 K0.
∃ s' v. split. { applys E R1. } { applys K1. }
Qed.
Lemma triple_eval_like : ∀ t1 t2 H Q,
eval_like t1 t2 →
triple t1 H Q →
triple t2 H Q.
Proof using.
introv E M1. intros H'. applys hoare_eval_like E. applys M1.
Qed.
It follows that if two terms are equivalent, then they admit
the same triples.
Lemma triple_trm_equiv : ∀ t1 t2 H Q,
trm_equiv t1 t2 →
triple t1 H Q ↔ triple t2 H Q.
Proof using.
introv E. unfolds trm_equiv. iff M.
{ applys triple_eval_like M. introv R. applys* E. }
{ applys triple_eval_like M. introv R. applys* E. }
Qed.
trm_equiv t1 t2 →
triple t1 H Q ↔ triple t2 H Q.
Proof using.
introv E. unfolds trm_equiv. iff M.
{ applys triple_eval_like M. introv R. applys* E. }
{ applys triple_eval_like M. introv R. applys* E. }
Qed.
The reasoning rule triple_eval_like has a number of practical
applications. One, show below, is to revisit the proof of triple_app_fun
in a much more succint way, by arguing that trm_app (val_fun x t1) v2 and
subst x v2 t1 are equivalent terms, hence they admit the same behavior.
Lemma triple_app_fun : ∀ x v1 v2 t1 H Q,
v1 = val_fun x t1 →
triple (subst x v2 t1) H Q →
triple (trm_app v1 v2) H Q.
Proof using.
introv E M1. applys triple_eval_like M1.
introv R. applys eval_app_fun E R.
Qed.
v1 = val_fun x t1 →
triple (subst x v2 t1) H Q →
triple (trm_app v1 v2) H Q.
Proof using.
introv E M1. applys triple_eval_like M1.
introv R. applys eval_app_fun E R.
Qed.
Another application is the following rule, which allows to modify the
parenthesis structure of a sequence.
Exercise: 3 stars, standard, optional (triple_trm_seq_assoc)
Prove that the term t1; (t2; t3) satisfies the same triples as the term (t1;t2); t3.
Lemma triple_trm_seq_assoc : ∀ t1 t2 t3 H Q,
triple (trm_seq (trm_seq t1 t2) t3) H Q →
triple (trm_seq t1 (trm_seq t2 t3)) H Q.
Proof using. (* FILL IN HERE *) Admitted.
☐
triple (trm_seq (trm_seq t1 t2) t3) H Q →
triple (trm_seq t1 (trm_seq t2 t3)) H Q.
Proof using. (* FILL IN HERE *) Admitted.
☐
Recall the specification for the function ref.
Its postcondition could be equivalently stated by using, instead
of an existential quantifier \∃, a pattern matching.
Parameter triple_ref' : ∀ v,
triple (val_ref v)
\[]
(fun r ⇒ match r with
| val_loc p ⇒ (p ~~> v)
| _ ⇒ \[False]
end).
triple (val_ref v)
\[]
(fun r ⇒ match r with
| val_loc p ⇒ (p ~~> v)
| _ ⇒ \[False]
end).
However, the pattern-matching presentation is less readable and
would be fairly cumbersome to work with in practice. Thus, we
systematically prefer using existentials.
Historical Notes
(* 2022-09-20 16:51 *)